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Abstract

Three geometrical methods for’ determination of relative geodetic position using
artificial satellites, that is, the simultaneous method, the trailing method, and the
simultaneous-trailing method are briefly outlined. The latter two of them are of very
efficiency, because they do not always require precise timing device at all stations.

The procedure of reduction for' these geometrical methods is described in detail
Since the observation equations can be derived to so-called * position plane ”, we can solve
them together by assigning a weight to each equation.

Formulae for weighting of position planes and corrections for phase effect of satellite
are given in appendices.

1. Introduction

The problem on the geometric connections between points on the surface of the
earth by observations of artificial satellites has been investigated by many authors.
For the use of the passive satellites, simultaneous method, which is also called
as the method of synthetic observations, is widely employed in the world and
a method so-called trailing method was proposed by Hirose (1963) and is used
frequently in Japan. The latter does not necessitate timing device except at one of
base stations, while the former requires precise timing device at each station.

In a previous paper (Yamazaki, 1968), the author discussed the relative advantages
and disadvantages of these two methods of satellite triangulation, and pointed out that
the trailing method has advantages in efficiency and in cost, for the reason that ordi-
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nary astrocameras may be used. In the same paper, he also said that the trailing
method needs to utilize satellites of proper inclination. Afterwards, from some
experimental observations, the author found that a method which combines these two
methods is very effective, even if we could not use but high inclination satellites.
We shall call this method as “simultaneous-trailing method ” hereafter.

In the present paper, the methods of determining relative position by the above
mentioned methods of observation are discussed. And formulae for weighting the obser-
vation equations and corrections for phase effect of satellite are given in appendices.

2. Out line of three methods of satellite triangulation

1) Trailing method

In Fig.1la, A is a base station having a camera with a timing device, B is another
base station having a simple camera ona equatorial mounting without any timing device,
X is an unknown station having the same camera as the station B, and S, is the
satellite position at a time 2. We want to determine the position of X geodetically.

X

Fig. la Trailing Method.

Suppose that the satellite is photographed at A, B and X at about the same time.
Thé photographic plate taken at A shows the dotted (or chopped) images of the
satellite produced by the timing device and those taken at B and X show the trail
image of satelliteé around ¢ ‘

The direction E of S, as seen from A is obtained by interpolation from the dotted
images to which time is tagged on the photographic plate taken at this station, with
reference to background stars. As is clearly seen from the figure, S, is the point of
intersection of ‘satellite’s trajectory S/‘TSZ in space and the plane AS,B defined by A,
B and A—SJ Accordingly, the image point corresponding to.the satellite position at
t on the photographic plate taken at B is given as the intersection of the great
circle containing the projection of AS; as seen from B on the celestial sphere with the
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trail image, and the direction }%‘: are determined with reference to the background
stars in the same way as A—So)

Since the coordinates of A and B are known, the space coordinates of S, are
fixed as the intersection of two straight lines AS, and BS, which have the directions
Z:S‘—.: and E?goi and pass through A and B, respectively. The unknown point X should
be on a plane which is defined by S, and the projection S/;SE of the satellite trail on
the celestial sphere as seen from X,

Hence, the coordinates of X are given by the intersection of such three or more
planes.

2) Simultaneous method

In Fig. 1b, as before, A and B are two base stations, X is unknown stations
and S, is satellite position at time #. Each of these stations are equipped with
precise timing device.

Sy

'\T So

X Fig. 1c¢ Simultaneous-Trailing
Fig. 1b Simultaneous Method. Method.

The directions A_S;,Ego and :X,’—SZ as seen from A, B and X can be derived, with
reference to their background stars. The straight lines AS, passing through A in the
direction of A_So) and the direction }?S; define a plane AS,X, called as “ position
plane” hereafter. Similarly, the straight lines BS, and XS, define another position
plane BS;X. As X is on the intersection XS, of the position planes AS,X and BS,X,
we can fix the position of X as the point of intersection of XS, and another position
plane obtained from the similar simultaneous observation in a different position.

So far, for the sake of brevity, we have assumed that the positions of A and B are
known. However, the position of B relative to A can be fixed by two simultaneous obser-
vations made at A and B, if only the distance between A and B is previously given.
Accordingly, the simultaneous method malkes possible the determination of the absolute
position of stations independently to existing geodetic system covering A and B.

3) Simultaneous-Trailing method

3
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In Fig, 1c, A is a base station having a camera with a precise timing device,
B is another base station having a simple camera on a equatorial mounting without
any timing device, X is an unknown station having the same camera as A4, and S,
is the satellite position in space at time #.

In this case, the space coordinates of S, are derived from the observations made
at stations' A and B, in the same way as the case of the trailing method.

As X should be on the straight line S,X which has the direction of the satellite
as seen from X at time ¢ and passes S, Sox is a kind of position line of X.

Obviously, the position line is given by only one set of simultaneous obser-
vation at three stations, and X is fixed as the intersection of such two position lines,

As we have seen in the preceding sub-sections, the observation equations in the
trailing-and the simultaneous methods are given by the same form expressed by
the position plane. Accordingly, in this case, too, it will be a great convenience
to express the observation equations by two position planes which their intersection
denotes position line SX.

As can easily be seen, one of these position planes AS,X can be directly derived
from the pair of .observations made at A and X in the same way as the case of the
simultaneous method. On the other hand, another position plane BS, X is obtained by
combining the straight line BS, fixed by the coordinates of S, and B with the
observed direction )ZS—O)

This simultaneous-trailing method is available even if we have high inclination
satellites alone, for which the trailing method is hardly be applied. Further, we can
expect to get more succesful observations than the case of the simultaneous method,
because much more pairs of stations having ordinary astrocameras without timing
device can be treated as the base stations.

3. Reference coordinate systems

Prior to the description of the reduction technique, the definitions of reference
coordinate systems which will be used throughout this paper are given in this section.

The first coordinate system (X, Y, Z) is defined by the actual axis of rotation
of the earth (true pole) as the Z-axis, and the true vernal equinox as the X-axis
and the point on the equator, the right ascension of which is 6", as the Y-axis and
centered at the center of gravity of the earth. In reality, this coordinate system
is replaced by -a system defined by the apparent places of the background stars
belonging to a catalogue. We shall call this system as the sidereal coordinate system
according to Veis (1963).

The second coordinate system (U, V, W) is obtained by rotating the first system
about Z-axis so that XZ-plane coincides with the true Greenwich meridian. This
system is related to the first system by the following expression :

U cosH sinH 0 X
(V)z( —sin H cos H 0>-<Y> (1)

w 0 0 1 Z
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or
X cos H —sinH 0 U
(Y):( sin H cos H 0)( V) (2)
Z 0 0 1 w i
where H is the true sidereal time calculated from observation time in UT1 by using
the Ephemerides. We shall call this system as the true terrestrial rectangular
coordinate system.

The second system refers evidently to the instanteneous pole and is not fixed with
respect to the earth surface. In this system, as the coordinates of stations vary as
time goes on, it is inconvenient to solve the problems of position determination from
observations spread over a long time interval. Accordingly, we shall introduce the
third coordinate system (U, Vi, Wo) defined by Veis (1963) as follows. He call this
system as the ideal terrestrial rectangular coordinate system.

The origin is at the center of gravity of the earth analogous to the 1st and 2nd
system, and oriented so that W,-axis is directed towards the mean north pole as defined
by the International Latitude Service.  The U,— W, plane is parallel to the mean
Greenwich meridian as defined by the Bureau Internationale de 'Houre.——At the
XIITth General Assembly of IAU in Prague (1967), a resolution was adopted that the
origin of the north pole is defined by the mean pole 1900-1905 from 1967, which is
called as the Conventional International Origin (CIO). Thus the above-defined mean
north pole and the mean meridian are referred to the CIO, hereafter.

The actual motion of the true pole, defined by the instantaneous axis of the
rotation of the earth, is determined by the International Polar Motion Service, which
gives the position of true pole in terms of the angular coordinates (z, y) of the
instantaneous pole with respect to the CIO.

The third system is related to the second system by the expression

U, 1 0 & U

(Vo >=< 0 1 —y)-(V) (3)
W - y 1 w
U 1 0 — Us

(V)z(o 1 y)( Vo ) (4)
w x -y 1 We!*

From (1) and (3), therefore, the relation between the first and third systems is
given by the expressions (Veis, 1963), :

Us cos H sin H & X

( Ve )z( —sin H cos —y)-(Y) (5)
Wo —zcos H—ysin H —gzsin H+ycos H 1 AR
X cos H —sin H —z cos H—y sin H Us

( Y)z(sinH cos H —xsinH—kycosH)-( Vo ) (6)
A x —y 1 W It
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In the reduction process of the satellite triangulation, the coordinates of satel-
lites are given by the (XYZ) system, and the stations by the (U, V, W) system. They
are related by the formula (5) or (6).

In order to get the three-dimensional coordinates of the stations in the ter-
restrial rectangular coordinate system, namely, independently of the reference
ellipsoid, it is sufficient to adopt the above coordinate systems. However for those
practical triangulation problems such as linking of an isolated island with a trian-
gulaﬁon net of main land, the positions of the stations are usually given by the
geodetic coordinate system (2, o, /).

. Unless the reference ellipsoid is properly oriented in the terrestrial rectangular
coordinate system, it is impossible in principle to transform the geodetic coordinates
into the terrestrial rectangular coordinates.

So far as our purposes are limited to the relative position determination, we
can take the following well-known relation between the geodetic coordinates and the
terrestrial rectangular coordinates, within the accuracy of the triangulation nets.

Us=(N+h)cosp cos i,
Vo=(N+17) cosp sin 2, ; (7)
Wy=[N(1—e®+/A] sin ¢,
and
N=a (1—e® sin® p)~/%,
where ¢ and ¢ mean the equatorial radius and the eccentricity of the reference
ellipsoid, respectively. ’

4. Plate reduction

The method of plate constants is adopted to derive the celestial coordinates of
the satellite from the plate. |

We shall take the reference stars having magnitude (8=~9™) as many as pos-
sible in the vicinity of the satellite images concerned (within a field of about 3°
diameter).

Let (%, v:) and (zy, y,) respectively denote the measured coordinates of refer-
ence stars and satellite’s chopped images (or subdivided points of satellite’s trailed
image in the case without timing device).

. As the celestial coordinates of the reference stars, we will adopt the apparent
right ascension and declination «;, §; which are computed from a star catalogue and the
ephemeris, because the adoption of the mean place complicates a situation, especially
in the trailing method.

As well known, the relations between the celestial coordinates as, &; and the
standard coordinates &;, »; are shown by

€08 d; cos az=1; ,
coSs 8, Sin a;=my , (8)

sin §; =n;,
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—sin ag f;+Cos ao 72 =&,
—sin §o-c0os ag-l;—Sin G- Sin @o* 134-C08 o+ 12:,=7s ,
COS 0+ COS g J;+COS Jy - Sin g » M2 +8in 8o 1. =C; , (9)
&illi=¢s,
Fillo=n:,
where a, and §, mean the right ascension and declination of the plate center. (Generally
in a conventional satellite camera, a guiding telescope is not used to keep a star on
the plate center, so we only know the approximate values of a,, § at first. If we
take account of the higher order terms for the plate constants as shown later, the
errors resulting from such improper orientation of the plate center are almost negli-
gible. However, even when we must solve the problems by the method of linear
plate constants, due to insufficient number of the reference stars, we can succesively
derive the approximate values of ag, &, provided that the measured coordinates of
the plate center are known.)

So far as the higher order terms which originate from differential refraction,
decentering error, tilting error and camera distorsion etc., can be neglected, the general
relations between the standard coordinates and the measured coordinates are given with
sufficient accuracy by the following linear expressions (Turner’'s Method).

&=axi+by+c,
n=dz;+ey+f, i=1, - n.
The coefficients a, b, ¢, -+, f are called the plate constants.

(10)

If the zenith distance is larger than 60° and the camera distorsion cannot be
neglected, the second or higher terms must be taken into account. In this connection,
many different formulae have been derived so far.

The auther presently use the following formula given by W. E. Good et. al. (1962).
&i=awm;+by;+c+duyt+exi+f (@it ydas
=@+ hystit iy +kyi+ (@ +yDys (11)

i=1, ., n. ,
Here, it should be noted that (11) were derived from the assumption that z-axis and
¢-axis are parallel to each other. In use of a comparator without a turn table, we
cannot set the z-axis of the comparator parallel to &-axis, in general.

In order to solve this problem, the author proposed the following method.

We first determine the plate constants «, b, ¢, -, f in (10) by applying the
method of least squares.

Let 0 be the angle between & and x-axis, and &4, &, the scale factors in &- and
y-directions, respectively, then the following relations (Muller 1964) are held between
(a, b, d, e) and (&, &2, 0):

a=£1 €084, d=r;sing,

. (12)
b=k, sing, e=—ky COSH,
and ¢ may be calculated from the values of «, b, d, ¢ by using the formulae
tan 0= 4 or b (13)

a . e ..

7
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Though the two values of ¢ derived from (13) do not strictly agree with each other,
we can approximately take their mean value in general cases.

Transform the measured coordinates (a;, y;) into the new coordinates (&;, 7s)
which are given by the following relations.

= c.osﬁ—lfm sind, (14
Y= Sin f—y; cos @, :
Obviously, the above equations show that #-axis is approximately parallel to &-axis.

By using the values of (&, #;) in place of (@, v:), We can solve (11) by the
method of least squares. ~

Here, it is also to be noted that at least three stars are needed for the solution,
because (10) have six unknown plate constants. On: the other hand, as (11) have twelve
unknown plate constants, six stars are needed at least.

The standard coordinates of the satellite’s images (&;, ;) can be calculated from
(10) or (11) for the corresponding measured coordinates (z;, y;) by using the plate
constants just determined. above.

Finally, the ‘celestial coordinates of -the satellite (ay, ;) are given by

=1V,
7i=nCs,
&=¢;-05,

[;=C08 atg (COS 8+ Ly—sin do+7;)—sin ao- €5, (15)
My=CO8 arg € j+sin o (CO8 8y & j—sin 8o+ 7;) , ‘
7;=C0S Jg+7j;+sin 6o+ &5,

sin §;=mn;,

tan a'j=771j/lj .

5. Smoothing of satellite’s positions

In satellite astrometry, it is to be especially noted that the duration of the
exposure -for background stars and -a satellite may differ from each’ other very much
and occur-at widely different times. As a result, the image motion of satellite caused
by the atmospheric disturbances in the neighbourhood of camera may affect the mean
position of the trailed or dotted images of the satellite, while the star images are
averaged about their true positions in case of using an equatorial mounting camera
Accordingly, we must be careful to smooth the observed positions of satellite.

The satellite cameras of the Hydrographic Department of Japan are equipped
with a special timing device having a travelling slit, which is designed to make
three groups of eight dot images aparting about three degrees from ‘each other on
a plate (Ono 1966).

The practical smoothing technique for the satellite positions observed by this
camera is described. below.  (For the principle of this smoothing method, the reader
should refer to the previous paper of the author (1968)).

Now the standard coordinates of the satellite images at time #;, &, ; can be
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calculated from the measured coordinates by using (10) or (11). The standard co-
ordinates &, 7; are transformed into the new standard coordinates &j, 7; which are
defined by‘
E;=&;cosf+ysind, (16)
7;=—E&;sinf+9; cosd, j=1, -+, 8 for each group,
and
tan 6=(ps—mn)/(Es—&1) -

The £-axis is clearly taken nearly parallel to the direction of the satellite
trail.——We shall call them as the modified standard coordinates, hereafter.

Assuming a relation between £; and 7;,

7=E-&+F&+G, an
we determine the coefficients E, F, and G by the least squares procedure,

As obviously seen from the definition of the modified standard coordinates, the
variation of 7 with respect to time is very small. Therefore, it is sufficient to
assume merely the following relation between £; and ¢;, in order to smooth the
satellite positions with respect to time.

Ey=E' B+ F 4G (18)
The coefficients E’, F’ and G, also, can be determined by the method of least squares.

Let us, now, find the smoothed satellite position at any time ¢ between # and #.

By substituting the value of ¢ in (18), we obtain &€ corresponding to £#. Similarly,
7 corresponding to & is given by (17). The transformations of the standard coordi-
nates £, 7 into the celestial coordinates @, § are made through (16), (15), with the
aid of the coordinates of plate center ay, d, already known.

The above procedure will be used only for #<¢<ts. When the satellite image
at time ¢ falls between each group of eight dot images, the procedure will not be
so applicable due to extrapolation. .

In this case, it may be well to apply Hirose’s preliminary orbital smoothing method
(1962) to the three smoothed positions of satellite which are obtained by the above
procedure at the central times of exposures for each group #, fir and Zi.

6. Reduction of trailing method

1) Determination of the direction of satellite as seen from B at time ¢

Let us first derive the equation of the great circle that expresses the plane ABS,
in Fig. 1a in terms of the modified standard coordinates from the plate taken at
station B. Hereupon, it is to be noted that generally this great circle cannot be
expressed by a linear form with respect to the measured coordinates, if we want
take account of the higher terms of the plate constants.

Before going into the problem, we obtain the celestial coordinates (a4, 64) of the
satellite position as seen from A at time ¢ by the procedure of the plate reduction
described in the foregoing section, and calculate the direction cosines 4, 74, 724
corresponding to (a4, d4) from (8). And we can also calculate the direction cosines
lpa, mpa, npa of B as seen from A given by the formulae

9
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lpa=(vp—w)|484, 19)
mpa=Wp—ya)dn4 ,
[2: e (ZB*_ZA)/ABA »

with

dpa= v {(xp—24)+ys—ya)+(Z5—24)"

Here, x4, ¥4, 24} %5, Y5, 25 Tespectively mean the geocentric rectangular coordi-
nates of stations A and B in the sidereal coordinate system (X, Y, Z) derived from
the relations (7) and (6) for their given geodetic coordinates.——According to the
previous paper (Yamazaki, 1968), we shall use the refraction heights instead of the
geodetic heights of stations through this paper.*

As already stated the plane -ABS, is defined by the direction ZITSZ and the straight
line AB. Thus the equation of great circle is given by
[ m #n
la M4 ns |=0, (20)
Isa 5:7 (3:7]
where (/, 7, ) mean the direction cosines of an arbitrary vector on the plane ABS,
(Fig. 1a).
We rewrite (21)

- A+m-B4+n-C=0, 20
with
M4 iy 74 I l4 o
= , = ) C =
Mpa s ipa Ia Ipa Mpa

The trasformation of (/, m, n) into the corresponding standard coordinates (¢, »)
is given by the following equations derived from (9) or (15):
{=C{(cos do—sin d;+7) cos ao—E&sin ao} ,
m=_C{(cos §—sin ds-y) sin ap+E&-cosao} , (22)
n=L{cos 8, +sin &} .
On the other hand, the relation between (&, 5) and the modified standard coordi-
nates (£, 7) is given by (16).
Thus, by means of (16) and (22), the equation of the great circle (20) can be
transformed into the following equations in terms of the modified standard coordinates:
pE+qg+r=0, (23)
where
p=(B cos ay— A sin a,) cos 0+C cos d— A sin d; cos ap— B sin &, sin a,) sin @,
q=—(B cos ay— A sin a,) sin 0+ (C cos dp— A sin §, cos ag—B sin d, sin ay) cos
r=A €08 dy COS ay+ B c0s d, sin ap+C sin d, .
We have already seen that the direction of satellite as seen from B at time ¢
is given by the intersection point of this great circle with the satellite trail.
Hence, our next step is to obtain the equation corresponding to the satellite
trail on the plate taken at station B (without timing device).

* If we want to treat with the corrections of the parallactic refractions, in the trailing
method, we must apply the corrections for all subdivided points on the satellite trail.
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Let @y, y; be the measured coordinates of the subdivided points (e.g. with a space
of about 2 mm) of the trailed image. The (x;, y;), by means of (10) or (11) and (16),
are transformed into the corresponding (;, 7,), with the aid of the plate constants
determined by the procedure of the section 4.
If we take enough short part of trail, this part can be approximated by the
following formula to sufficient accuracy.
7;=Ep &+ Fp-E;+Gp, (24
coefficients of right hand side can be also obtained by the method of least squares.
Thus, the coordinates of intersection point of the great circle with the satellite
trail (€5, 75) is given by the two equations (23) and (24).
Transformation of (€3, 7z) into (I, mas, ns), which is defined as direction cosines
of satellite as seen from B, can be carried out through (16), (15).
In passing, here we will derive the quantities needed in the later section.
We chose a point on the satellite trail about 0.1° apart from (£, 74). The
coordinates (&', 7'5) of this point are
E’B=§B+0.l><sin 1°,
ﬁ'B:EB'{E/%'i‘FB‘é,B‘FGB .
Then, (£}, 74) are transformed into the corresponding direction cosines (g, 725, #)
after the same procedure as described above.
Finally, we derive the quantities L, M, N, which denote the direction cosines of
normal vector of the plane BS,S; of Fig. la, from the following equations:

(25)

L=mpny—npmf
M=nplp—Izny (26)
© N=lgmlp—maly . i
2) Determination of geocentric coordinates of satellite
Let «, 8 and y be the interior angles /S,AB, L ABS, and /BS,A of 4ABS, in
Fig 1a, respectively. Then we can easily see that they will be given by
coS a=lulpat+mampstnanpa,
€08 f=—plpatmpmpa+nanzs,), 27)
7r=180°—(a+p).
And the distance 44 and 45 from A and B to the satellite are given by
da=dp4 sin gfsin y,
dp=dps sinafsiny. 9
Thus the geocentric coordinates of the satellite (a5, ys 25) can be calculated by
=g a+lada=xp+Ipds,
Ys=Ya+Mmads=yp+mpdp, (29)
Z5=24+nads=2p+npdp.
It will be noted, here, that the aberration effect, as already stated in the pre-
ceding paper (Yamazaki, 1968), can be ignored in the trailing method, so long as
the required accuracy is the order of 17 for satellite position.
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3) To derive the position plane

In section 1, the position plane is defined as such one that the coordinates of
satellite in space make with the projection of satellite trail on the celestial sphere
as seen from the unknown station.

Although the satellites generally draw a curved line in the space, we can take
such small segement that can be regarded as a straight line on the satellite trail.

Suppose that we could take such small segement on the satellite trail close to
the satellite position at time ¢ Further, let (%, mk, ny) and (%, mY, n%¥) be the
direction cosines of the both ends of this sedgement as seen from X.

Obviously, X is on the plane defined by the two straight lines which have respec-
tively -the direction cosines (/%, mk, nk) and (%, m¥, n¥), and pass ‘through the pre-
viously obtained satellite position (ws, ¥s, zs).

Thus, we can express the equation of the position plane by

r—Is Y—ys Z—2Zs

Iy My nh - |=0. (30)
I3 iy ny

Now the problem is reduced to finding the direction cosines (%, i, #%) and
{8, my, n¥). ;

A point corresponding to S, is situated somewhere on the trail image but its
position is unknown, because the station X is not equipped with a timing device. We
now introduce an assumed position X’ in place of X (for this assumed position it
will be sufficient to know within the order of 1 mile).

Let Ay be the distance between S, and X', which is given by

dy=~(ws—ax)+ys—yx)+Rs—2x) » G
where (zx, yx:, 2zx) means the geocentric rectangular coordinates of X’ and are
calculated be (7), (6) for the geodetic coordinates. (Needless to say, we must use
the refraction height for the height of X’). '

Then, the direction cosines of S, as seen from X’ are given by

ly=(vs—ax)|dx
my=(ys—yx)dx (32)
ny=(2s—2z2x)|dx: .
Transformation of ([y, 7%, #y) into the modified standard coordinates. (€%, 7%) is
carried out by (9), (16).

Now, let (£, 5, be the modified standard coodinates of subdivided points on
the satellite trail photographed at X. They can be derived by the same procedure
as foregoing section. ‘

In order to obtain a smoothed satellite trail, we also assume the following rela-
tion between &; and 7;, and determine its coefficients by the method of least squares:

7;=Ex-&+Fx-£+Gx, 7=1,2, . 33

If the values of the assumed coordinates of X’ and the. satellite coordinates
derived above are free from errors, the point (&%, 7%) should be on the satellite trail
and show the true direction of the satellite as seen from X at time ¢, but it is not the
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general case. The direction of the satellite as seen from the assumed position will
not deviate from the true direction by more than 0.1°, so far as the assumed position
is not apart from the true position by one mile or more and we observe the satellites
passing through.at an altitude higher than 1000 km. Here, it should be noted that we
can regard an arc length of 0.1° on the satellite trail as a straight line within the
accuracy concerned.

Let a point (&%, 7%) on the satellite trail, now, be the nearest point to the point
(%, 7%). From the above reason, then this point will be situated within 0.1° from
the true direction of the satellite at time # On putting &4,=E&y, and calculating
the value of 7% by (33), we can easily find the point (£%, 7%), since the E&-axis is
nearly parallel to the satellite trail.

Next, we take a point (€%, 7%) close by the point (£%, 7%) on the satellite trail,
say, at a distance of 0.1°. In the case of this example, the value of &% is calculated by
' ' E=F,40.1xsin1°, (34)
and the value of 7% is obtained from (33) by substitution £%.

It will be self-evident from the above discussion that the points (£%, 7%) and
(€%, 7% respectively correspond to the directions (I, mk, n%) and (%, n, n4) in (30).

Finally, transformations of (£%, 7%) and (€%, 7%) into (I, mik, ny) and (0%, m¥, 1y
are carried out by (16), (15).

4). Observation equations

Equation (30) appears to be solved by three sets of simultaneous observations since
it contains only three unknowns. As is clearly seen from (6) , however, the variables
z, y; and z in (30) are given as a function of time. Accordingly, we cannot solve the
equation from the sets of observations made at different times, as it stands. so far.

In order to solve (30), we must rewrite the equation by using the ideal terrestrial
rectangular coordinates (U, Vo, Wo) instead of the sidereal coordinate system (X,
Y, Z), as follows:

Us—10os  Vo—os Wo—1tWos
liy Moy Hox =0, (35)
o Moy Mo
where (#qs, Vos, tos), (Uox) My, 1x), and (U, mik, nly) correspond to (zs, ys, zs), (%,
wmy, wy) and (%, my, ny), respectively, and they can be calculated from (5) by
substituting (s, ys, 2s), (&, %, #y) and (0%, m¥, n¥) for (X, Y, Z), respectively.

When we solve (35) practically, we had better introduce, as before, the assumed
position. Here it is remarked that cofactors of (u,, vs, o) are not sufficient in the
number of digits, since (lly, 7z, #5x) and (b, Mm%, 15%) are nearly parallel to each other.

Let (sox, vox, twox) and (26ox, Yoxs, tox-) be the ideal terrestrial rectangular coor-
dinates of the true position X and those of the assumed position X’ corresponding
to (xx/, ¥z, 2y) of (31). Further, let dupx:, dvox., dwox. be the corrections which
should be applied to the assumed position so as to obtain the true position. Then,
the following equations hold ;

13
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tox = tox:+ ditox-
Vox=Vox' +A0ox: , (36)
Wox =wox:+ dwox: .

On substituting #ox, vox, wox, given by (36), for u,, ve, we in (35), and rearrang-

ing the equation, we get the observation equation ‘
A-duoxi+ B vz +C dwox =D, 37
with
A= (M —mxmik) ,
B=(ngxlx—lixtil) »
C=lxmix—mazli) »
D="—{A(ttozr—th05) + Bvox:—vos) + Ctwox: —wos)} «

As (37) has three unknowns, three sets of simultaneous observations are needed
at least.

For such a practical problem as the location of islands relative to the main-land,
it is usual to ask for the position expressed by the existing geodetic coordinates.

In order to rewrite (37) in terms of the geodetic coordinates, we substitute the
right hand sides of the following equations, which are obtained by differentiating (7),
for Aduox:, dvox:, divox: in (37).

Attoxe=—(N+hx) sin ox €08 Axs+ A —(N+hx) COS oz sin Az, A2z

+C0s @y €08 Ax:+ My

Avoxi=—{N+hzx) sin @ Sin Ay, - Az 4 (N+lxi) cOS oy COS Axr dAx (38)

+¢08 @y +sin Az, dhx

oy =(N(L—e®)+hx) cos g Aoy +sin oz Az ,
where doy, 4ix. are given in radian, and the terms higher than the order of e?
are omitted.

In order to denote Aoy, 42x: in unit of length (meter), we introduce the radius
of curvature of meridian R,=N?%1-e¢%/a* and the radius of parallel of latitude
Rp=Ncos¢g. Then, the following relations between their unit hold:

do (in meter)=4dep- Ry, (in radian),

. . . (39
A2 (in meter)=42- Rp (in radian).
With the aid of (39), (38) can be written as
duoxe=a dog+d-dix +fdhy
vz =b-dpgp+e - ddx+g-dlix: , (40)

Swoxi=c-dpg +i-dhy,

with the notations of

a=—(1—e? sin® gy) sin pg cos Axf(1—e?), e=cos iy,

b=—(1—¢" sin® py)-sin gy sin Axf(1—e%), f=c0S @x COS Ax,

c= (l1—e®sin’ pg)-cosepy , g==COS @y SiN Ay,

d=—sin A4, i=sin gz .

Inserting (40) into (37), and normalizing the coefficients of Aoy, 42z, dhy:, we

finally get the observation equations (the equations of position planes) expressed by
the geodetic coordinates
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Pdoy+Q-A2x+R-dhy =K, (1)
with
A-a+B-b+C-c=p,
A-d+B-e =q,
A-f+B.g+C-i=v,
VPPt =n,
P=pin, Q=q/n, R=yln, K=Dln.
In these equations, K means the distance between the position plane and the
assumed position of unknown station.

7. Reduction of simultaneous method

In Fig. 1b, let (w4, ya, 24) be the coordinates of station A, and (L4, m4, #4),
({x, mx, nx) be the direction cosines of satellite as seen from stations A and X at
time ¢, respectively. Then, we can find their values by the same procedure as
described previously, (Here it should be noted that station X is equipped with a
timing device).

In this case, as is clearly seen from Fig. 1b, the position plane is expressed by
the equation

T—&a Y—Ya RB—2y
I M4 na |=0. (42)
lx My Nx

As (42) is given by the sidereal coordinate system, we must transform the
coordinate system into the ideal terrestrial rectangular coordinate system by (5),
from the same reason as mentioned in the trailing method.

Then, we get the following equation instead of (42).

Uo—Uou Vo—Vo4 Wo—1Wod4
loa Mo Hoa =0. (43)
lox Moy Moy

Next, let (detoy:, dvozs, diwoy) be the corrections for the coordinates of the assumed
unknown station (#og:, voxs, oy} in order to get the corresponding true coordinates
(#tox> Poxs Wox).

Analogous to (37), expanding (43) by duyx:, dveg:, and dw,y, we obtain

Al Ao+ B dvog +C' Aoz =D’ (44)
with the notations
A =mg4Mox—Moa- Moy »
B =g lox—Lloa 1oy ,
C'=los Mox—m04box .
D’ =—{ A (ttoxr~—10.4) + B (0o g — vo.4) +C (Woxr —100.4)}

To express (44) by the geodetic corrections (depox:, dAog:, dhoy) instead of (detay,
Avox:, divox), We can employ the same procedure as (38), (39), (40). Then, we get
the observation equation

G Aoy + H' - ddogr -+ T - dltoy =77, (45)

15
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with
Alva+ B 0+Cc=¢g’
Al-d+B e =
Al f+B g+ C =7
VR =

G =¢'In', H=Nn, r=iiw, J=Dn
where the coefficients a, b, -++, 7 are given by (40).
In the previous paper (Yamazaki, 1968), the author pointed out that the planetary
aberration effect is more serious in the simultaneous method than in the trailing method.
To take account of this effect, the author employed a relative correcting method

dyx , . .
cA ) as the direction of satellite as seen

which uses the value at time <t+ % —

from A, without any corrections for station X. Here 4y and 4,4 mean the distances
between the satellite and stations X and A, respectively, and ¢ means the light
velocity. As for the values of 4y and 44, it will be sufficient to use those given
by the prediction. On the other hand, the displacements due to the diurnal aberration
are generally so small that they are negligible. If necessary, the corrections can
be applied to the positions of satellite according to the procedure commonly adopted
in spherical astronomy. :

8. Reduction of simultaneous-trailing method

As was discussed in section 2, the position line S, X (Fig. 1c) can be obtained
by only a set of simultaneous observations in the case of simultaneous-trailing method.
However, it is more convenient to solve the problems by observation equations given
in the form of the position plane instead of the position line, because this procedure
makes it possible to treat together with the results of the observations made by other
methods. As those position planes, we take the planes AS,X and BS,X (Fig. 1¢),
whose intersection yields the position line S,X.

In this method, A and X are equipped with a precise timing device. Then, we
can apply the simultaneous method for the results of simultaneous observations made
at A and X, by which the position plane AS,X is obtained.

On the other hand, we do not know the direction of satellite as seen from B at
time ¢, because B is not equipped with the timing device. However, we can calculate
it according to the method described in section 6, for a set of observations made at
A and B. This brings the same result as the case in which B is equipped with
the precise timing device, too. Combining this calculated direction of satellite as
seen from B with the observed one as seen from A, and applying the simultaneous
method, we get the position plane BS,X.

9. Concluding remarks
So far, we have seen that all of the observation equations for the three kinds of

satellite triangulation methods can be given as equations of position planes. Accord-
ingly, we can solve the results of the simultaneous observations made by these
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different methods together, provided that these obhservations are independent to each
other. But, here, we must pay attention to the followings,

As pointed out in the previous paper (Yamazaki, 1968), the trailing method has
a serious disadvantage that the resulting accuracy depends on the geometrical relation
of the base stations to the satellite track, though this method has such advantages
that ordinary astrographs are applicable and precise timing devices are unnecessary.
The same is true in the simultaneous-trailing method, although the unknown station
needs the precise timing device. Thus, if we want to solve these observation equa-
tions together, the weights should be assigned to them, as is explained in the Appendix 1.

Then, it should be noted that either of the trailing method and the simultaneous-
trailing method needs the two base stations, of which the coordinates are known. There-
fore, in these methods, we only get the positions relative to the two base stations
belonging to the same geodetic system. For the purposes of controlling the existing
geodetic system and determining the absolute position, the simultaneous method only
gives a effective direct means.

As is evidently seen from Fig. 1b, two sets of two-station observations made by
the simultaneous method make possible to determine the direction between the stations
(the reader is referred to Aardoom, et al.,, 1966). Starting from an initial point, we
can successively locate all stations by the simultaneous method, while a scale factor
remains as unknown. At present, transcontinental traverses by electronic distance
measuring devices are used to scale the satellite triangulation, hut they may be
replaced by laser ranging of satellites in future. '

Now, we have seen that the coordinates of the stations derived from the satellite
triangulation are given by the three-dimensional coordinate system which origin may
generally not coincide with the center of gravity of the earth, although its axes are
parallel to those of the ideal terrestrial rectangular coordinate system. In order to bring
the origin to the center of gravity of the earth, it needs to combine the results
obtained by the geometrical method described in this paper with those by the dyna-
mical methods which analyze the motion of artificial satellites in the gravitational
field of the earth.

This is a dissertation presented for the degree of Doctor of Philosophy at Kyoto
University.

Appendix

1. Weighting of the position plane

In the previous paper (Yamazaki, 1968), the author pointed out that it is unfavorable
to assign the equal weight to the position planes derived from different methods, say, the
trailing and the simultaneous methods, and proposed the formulae appropriate to these weights
by means of vector analysis, In the following, these formulae will be derived employing
the notations in this paper.
1) Trailing-method

In the previous paper, the weight W is given by the following formulae

17
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WLl E Y
with
Ea=[{{b-r3.0/(b- @)y +{{a x)b-r5.0/b- af}2] % o4
E=[{(a-%).Irsl (b @)}-+{(a- x)b 12/ )] 2 ey , (i)
Ey=|ryg| Xex .
Here, the notations mean: (Fig. 1a)
a : unit vector of the direction of satellite as seen from A
b : unit vector of normal of the plane BS,S,
x : unit vector of normal of the plane X5,S;
reas ¢ relative position vector between A and B
rys: relative position vector between an assumed position X’ of X and satellite S
es e and ¢, : observation errors of satellite at station 4, B and X, respectively.
The factors in the right hand side of (i) are expressed by notations of the present

paper as follows:

(a-x)=IaLx +maMx +naNx,
(b-a)y=I4Lp +maMp +n4Ng,
(b rp)=La(wpy—2,)+Mp(ys—y0)+Na(zs—24) (ii)

[rpal=A{(@s =22+ — V)2 (24— 252} 2= B4 ,
[rys|={(@s— 2 P+-Ws—yx 2-t-(25—25 2P 2=dx, ,
where ‘

Lx=AJ(A2+Be4-C2)\2 My=Bj(Ax B2 Caye, Nx=C[(A24 B24-C2)v2 |
Lp=L)(L2+M2+N2ywe,  Mp=M}L2+M24 N2YW2,  Np=Nj(L:+M2+N2)iz,

2) Simultaneous-method
In the previous paper, the weight W is given by the following formulae.
W={(h+ed)2 (1 ap|fsin ¢}72, (i)
where ¢ means the angle subtended between straight lines AS, and XS, (Fig. 1b), and
r,x. means the relative position vector between an assumed position X’ and A. They are
also expressed by the notations of the present paper as follows:
sin ¢:(A12+Blz+c/2)1/2 ,
[raxl={(@x =02+ (Y — Y+ (2 — 2, )2
3) Simultaneous-trailing method

@iv)

In the previous paper, the author did not derived the formulae for this case. Analogous
to the other cases, we can easily derive the formulae.
Let us denote the unit vector of the direction of satellite as seen from B by S, the
position vector of B by rj and its satellite range by 4z (Fig. 1c).
Then, the position vector of satellite ry is given by
re=rz+4s:S. )
On the other hand, rg is given as the intersection point of the direction of satellite as
seen from A with the trail of satellite as seen from B by ((6) in the previous paper)
ry=r+ay(b-rp)/(b-a), (vi)
where r/ means the position vector of A and others have the same meanings as in (i), (ii).
Differentiating (v) and (vi), we can derive the reduced positioning error S of satellits
as seen from B as follows:

(Beris) (b-da)b 1 p)t
8=1"ay "7 (b-ay

+ {(8b-745)b-a)— (b7 1,)(0b- )}ar }/AB, (vii)

b ap
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with the assumptions dr,=0, and dr,=0.

We have already seen in section 8 of the present paper, that the simultaneous-trailing
method can be divided into two simultaneous methods with the aid of  the calculated S.
In regard to the resulting weight, we can also use the same formula as (iii) for the com-
bination of B and X, that is,

W {(es)+(ex 2% ryosl sin g2 (viii)
In'the above, all factors excepting e, have the same meanings as the notations in (iii), and
ep is the resulting error which can be calculated by the following formula from the

observation error s, of the station B.

es=lasI=H (b1 (Branf )

(b-ay (b-ay
(ix)
[Papl® | (B-1 ) e e ’
+{(b_a)2+ e } B] /AB.

The relation between the notations in (viii), (ix) and those of the present paper may

be analogized from the relations (ii) and (iv).

2. Corrections for the shape of satellite

In the observations of balloon satellites, the center of photographic image of satellites
may not generally coincide with the true cénter of the satellite, due to the phase angle at
the satellite between the sun and the observing station. For instance, in the case of satellite
of diameter about 40 m, such as Echo II, this displacement reaches to about 20_m at the
phase angle of 180° on calculation, though we may. not, of course, observe for such extreme case.

In . general, however, this effect is not so serious, because in the satellite triangulation
we treat the relative discrepancy between the satellite’s directions as seen from every
station. However, for the satellite having larger diameter and lower altitude, this effect
could not be ignored,

On the existing balloon satellites, we have at present very little informations about
their exact shape in flight. However, if we assume that the satellites have spherical shape and
property of specular reflection, the problem can easily be solved as- below. (Even for dif-
fuse reflection we can take the same solution within the accuracy concerned, if the obser-
vations are not made at extreme phase angle.) ]

See Fig. 2 Let S be the sun, A the center of the satellite, O the observer, aﬁd M the

as

Fig. 2. Phase Effect
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reflection point for the specular reflection. By the law of reflection, we have
/. SAM=/ MAO .

Let us denote the apparent dirvection of the satellite as seen from O by 51\7[) Then,
the problem is reduced to determining the corresponding true direction EA? by applying
corrections for W

Let Xo, Yo, Zo be the geocentric equatorial rectangular coordinates of the sun (which
are given in the ephemeris), @4, ¥4, 24 those of the satellite (for which the predicted values
can he used with sufficient accuracy), and @ ¥, 2, those of the station.

We now consider a new rectangular coordinate system by taking parallel {o.the above
system and has the origin at the center of the satellite.

Let lo, o, ne and Iy, my, 1y be the direction cosines of the sun and station 0, respec-
tivel, as seen from the center of the satellite in the new coordinate system. Their values
can be calculated by the following equation

lo=(Xo—u,)/Do=Xo[Ds ,

B =)
me=(Yo—y4)/Do= Yo/Do ,
ne=(Zo—2)/Do=Zo[Do ,
l =(x,—a,)/D )
o=(@—w)/Dy (xi)

me=(Yo—Y)/Da
ne=(20—2,)/Da ,
with
Domn/ X5+ Y5425,
Da=a/ @~z +(Yo— V)P +(Ze—2a) -
Similarly, we write lar, wmar, nar for the direction cosins of the point M. Since the

__)
vector SM is on the plane OAS and / OAM=/SAM, the law of reflection givens the follow-
ing equations ‘

I My o
lo me 1o =0, (xii)
I my My
and
Iatlo Fmarme +narno=Llarly+marmg+narng . (xiii)
By rearranging (xii), (xiii), we obtain
InL+mauM+nyyN=0,
(xiv)
Lyllo—Io)+mu(meo—mo)+ (o —iy=0,
with

L=(meny—nomy),

M=(ncly—lony) (xv)
N=(lomy—mol,)

On the other hand, rightascension and declination of M as seen from A, «ar, dar, are
related to lar, mar, na by

lar=cos ay Ccos dyr ,

mar=sin a, cos dyr , (xvi)

nar=sin dr .

Inserting (xvi) into (xiv) and rearranging, we get
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{L(no—19)— N(lo—1p)}

Tan ax= {N(ﬂl(g)— 7;10)—21{[(719—710)}
. . . xvii
Tandyr=— (cosay L‘*[:]sm @ M) , ( )

where the sign of ay is discriminated by the condition |ae—ay|=6h. Thus we can calcu-
late. the values of Iy, mar, nar from (xvii) and (xvi).
Now let @, vy, 2y be the geocentric equatorial rectangular coordinates of .  Then M
their values are given by the following equatiovns
Zy=aa+7In,
Yy =YA+1 M, (xviii)
Zy=ZA+T 0 '
where » means the radius of the satellite,
Also, let, Iy, my, ny be the observed direction cosines of the satellite (60r1‘esponding
to 0717[ in Fig. 2) and 7, m), », the true ones (corresponding to 574 in Fig. 2), Then, their
values can be calculated by the following equations from the coordinates of A, M and O:

ly=(wy—ag)/Dar ly=(@a—0)/Da,
My =Y —o)/Dat , my= Wy —vo)/Da , (xix)
ny=(2y—20)/Da , wy=(2,—20)/D4s ,

where Dy means the distance between the reflection point M and the observer 0, which
can be calculated by
Dar=n/(@y— 00+ Uy — o)+ —20P (xx)
Clearly, the corrections 4l},, dmy, dny which should be applied to Ij, my, #; in order to
get Iy, miy, n); are given by
Al =U—1ly dmy=m,—my , dny=nl—ny . (xxi)
We can now proceed to show these corrections by the values of right ascention and
declination day, 405
Let aj, 0y be the observed rightascension and declination of the satellite, They are
related to I, my, ny by the following equations:
tan ey =my/ly , sindy=ny. (xxii)
Differentiating (xxii), we get
doyy =y dmy—my - dly) cos? aly lZ
A6 =sec oy dny .
Finally, we get the corrected true positions of the satellite «y, ¢, from the equations

(xxiii)

ay=ay+day

=08y +doy .

Here it is to be noted that in the trailing method the directions of the satellite’s trails

as seen from B and X (Fig. la), which are unequipped with timing device, are shown by
the standard coordinates (&;, 7, i=1, .-, N} instead of the celestial coordinates («:, 4+, i=1,

<., N). In this case, accordingly, the procedure for the above corrections must he taken

(xxiv)

after transformations to the celestial coordinates.



22 AKIRA YAMAZAKI

References

Aardoom, L., A. Girnius, and G. Veis 1966, Geodetic Parameters for a 1966 Smithsonian
Institution Standard Earth 1, SAO Sp. Rep. 200.

Good, W. E., J. H. Berbert and J. D, Costerhout 1962, Photographic Science and Eng., Nov,—
Dec..

Hirose, H. 1962, ]our Geod. Soc. Japan, Tokyo, 8, 102.

Hnose, H. 1963, Procedings of The First International Symposium on The Use of Arttﬁczal
Satellites of Geodesy, Amsterdam, p. 278.

Muller, L. 1. 1964, Introduction to Satellite Geodesy, Frederick Ungar Pub. Co., New York, p
312.

Ono, F. 1966, Report of Hydrographic Researches, No. 1, 63,

Veis, G. 1963, Procedings of The First International Symposium on The Use of Artificial
Satellites of Geodesy, Amsterdam, p. 201.

Yamazaki, A. 1968, Report of Hydrographic Researches, No. 4, 43.



